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SUMMARY The Win32 Portable Executable File Format (PE) was designed to be a standard
executable format for use on all versions of the operating systems on all supported processors. Since its
introduction, the PE format has undergone incremental changes, and the introduction of 64-bit Windows
has required a few more. Part 1 of this series presented an overview and covered RVAs, the data
directory, and the headers. This month in Part 2 the various sections of the executable are explored. The
discussion includes the exports section, export forwarding, binding, and delayloading. The debug
directory, thread local storage, and the resources sections are also covered.

ast month in Part 1 of this article, I began a comprehensive tour of Portable Executable (PE)
files. I described the history of PE files and the data structures that make up the headers,
including the section table. The PE headers and section table tell you what kind of code and data
exists in the executable and where you should look to find it.

      This month I'll describe the more commonly encountered sections. I'll talk a bit about my updated
and improved PEDUMP program, available in the February 2002 download. If you're not familiar with
basic PE file concepts, you should read Part 1 of this article first.
      Last month I described how a section is a chunk of code or data that logically belongs together. For
example, all the data that comprises an executable's import tables are in a section. Let's look at some of
the sections you'll encounter in executables and OBJs. Unless otherwise stated, the section names in
Figure 1 come from Microsoft tools.

The Exports Section

      When an EXE exports code or data, it's making functions or variables usable by other EXEs. To
keep things simple, I'll refer to exported functions and exported variables by the term "symbols." At a
minimum, to export something, the address of an exported symbol needs to be obtainable in a defined
manner. Each exported symbol has an ordinal number associated with it that can be used to look it up.
Also, there is almost always an ASCII name associated with the symbol. Traditionally, the exported
symbol name is the same as the name of the function or variable in the originating source file, although
they can also be made to differ.
      Typically, when an executable imports a symbol, it uses the symbol name rather than its ordinal.
However, when importing by name, the system just uses the name to look up the export ordinal of the
desired symbol, and retrieves the address using the ordinal value. It would be slightly faster if an ordinal
had been used in the first place. Exporting and importing by name is solely a convenience for
programmers.
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      The use of the ORDINAL keyword in the Exports section of a .DEF file tells the linker to create an
import library that forces an API to be imported by ordinal, not by name.
      I'll begin with the IMAGE_EXPORT_DIRECTORY structure, which is shown in Figure 2. The
exports directory points to three arrays and a table of ASCII strings. The only required array is the
Export Address Table (EAT), which is an array of function pointers that contain the address of an
exported function. An export ordinal is simply an index into this array (see Figure 3).

Figure 3 The IMAGE_EXPORT_DIRECTORY Structure

      Let's go through an example to show exports at work. Figure 4 shows some of the exports from
KERNEL32.DLL. Let's say you've called GetProcAddress on the AddAtomA API in KERNEL32. The
system begins by locating KERNEL32's IMAGE_EXPORT_DIRECTORY. From that, it obtains the
start address of the Export Names Table (ENT). Knowing that there are 0x3A0 entries in the array, it
does a binary search of the names until it finds the string "AddAtomA".
      Let's say that the loader finds AddAtomA to be the second array entry. The loader then reads the
corresponding second value from the export ordinal table. This value is the export ordinal of
AddAtomA. Using the export ordinal as an index into the EAT (and taking into account the Base field
value), it turns out that AddAtomA is at a relative virtual address (RVA) of 0x82C2. Adding 0x82C2 to
the load address of KERNEL32 yields the actual address of AddAtomA.

Export Forwarding

      A particularly slick feature of exports is the ability to "forward" an export to another DLL. For
example, in Windows NTÂ®, WindowsÂ® 2000, and Windows XP, the KERNEL32 HeapAlloc
function is forwarded to the RtlAllocHeap function exported by NTDLL. Forwarding is performed at
link time by a special syntax in the EXPORTS section of the .DEF file. Using HeapAlloc as an example,
KERNEL32's DEF file would contain:

   EXPORTS

   â€¢â€¢â€¢

   HeapAlloc = NTDLL.RtlAllocHeap

      How can you tell if a function is forwarded rather than exported normally? It's somewhat tricky.
Normally, the EAT contains the RVA of the exported symbol. However, if the function's RVA is inside
the exports section (as given by the VirtualAddress and Size fields in the DataDirectory), the symbol is
forwarded.
      When a symbol is forwarded, its RVA obviously can't be a code or data address in the current
module. Instead, the RVA points to an ASCII string of the DLL and symbol name to which it is
forwarded. In the prior example, it would be NTDLL.RtlAllocHeap.

The Imports Section
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      The opposite of exporting a function or variable is importing it. In keeping with the prior section, I'll
use the term "symbol" to collectively refer to imported functions and imported variables.
      The anchor of the imports data is the IMAGE_IMPORT_DESCRIPTOR structure. The
DataDirectory entry for imports points to an array of these structures. There's one
IMAGE_IMPORT_DESCRIPTOR for each imported executable. The end of the
IMAGE_IMPORT_DESCRIPTOR array is indicated by an entry with fields all set to 0. Figure 5 shows
the contents of an IMAGE_IMPORT_DESCRIPTOR.
      Each IMAGE_IMPORT_DESCRIPTOR typically points to two essentially identical arrays. These
arrays have been called by several names, but the two most common names are the Import Address
Table (IAT) and the Import Name Table (INT). Figure 6 shows an executable importing some APIs
from USER32.DLL.

Figure 6 Two Parallel Arrays of Pointers

      Both arrays have elements of type IMAGE_THUNK_DATA, which is a pointer-sized union. Each
IMAGE_THUNK_DATA element corresponds to one imported function from the executable. The ends
of both arrays are indicated by an IMAGE_THUNK_DATA element with a value of zero. The
IMAGE_THUNK_DATA union is a DWORD with these interpretations:

DWORD Function;       // Memory address of the imported function

DWORD Ordinal;        // Ordinal value of imported API

DWORD AddressOfData;  // RVA to an IMAGE_IMPORT_BY_NAME with

                      // the imported API name

DWORD ForwarderString;// RVA to a forwarder string

      The IMAGE_THUNK_DATA structures within the IAT lead a dual-purpose life. In the executable
file, they contain either the ordinal of the imported API or an RVA to an IMAGE_IMPORT_BY_NAME
structure. The IMAGE_IMPORT_BY_NAME structure is just a WORD, followed by a string naming
the imported API. The WORD value is a "hint" to the loader as to what the ordinal of the imported API
might be. When the loader brings in the executable, it overwrites each IAT entry with the actual address
of the imported function. This a key point to understand before proceeding. I highly recommend reading
Russell Osterlund's article in this issue which describes the steps that the Windows loader takes.
      Before the executable is loaded, is there a way you can tell if an IMAGE_THUNK_DATA structure
contains an import ordinal, as opposed to an RVA to an IMAGE_IMPORT_BY_NAME structure? The
key is the high bit of the IMAGE_THUNK_DATA value. If set, the bottom 31 bits (or 63 bits for a 64-
bit executable) is treated as an ordinal value. If the high bit isn't set, the IMAGE_THUNK_ DATA value
is an RVA to the IMAGE_IMPORT_BY_NAME.
      The other array, the INT, is essentially identical to the IAT. It's also an array of
IMAGE_THUNK_DATA structures. The key difference is that the INT isn't overwritten by the loader
when brought into memory. Why have two parallel arrays for each set of APIs imported from a DLL?
The answer is in a concept called binding. When the binding process rewrites the IAT in the file (I'll
describe this process later), some way of getting the original information needs to remain. The INT,
which is a duplicate copy of the information, is just the ticket.
      An INT isn't required for an executable to load. However, if not present, the executable cannot be
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bound. The Microsoft linker seems to always emit an INT, but for a long time, the Borland linker
(TLINK) did not. The Borland-created files could not be bound.
      In early Microsoft linkers, the imports section wasn't all that special to the linker. All the data that
made up an executable's imports came from import libraries. You could see this for yourself by running
Dumpbin or PEDUMP on an import library. You'd find sections with names like .idata$3 and .idata$4.
The linker simply followed its rules for combining sections, and all the structures and arrays magically
fell into place. A few years back, Microsoft introduced a new import library format that creates
significantly smaller import libraries at the cost of the linker taking a more active role in creating the
import data.

Binding

      When an executable is bound (via the Bind program, for instance), the IMAGE_THUNK_DATA
structures in the IAT are overwritten with the actual address of the imported function. The executable
file on disk has the actual in-memory addresses of APIs in other DLLs in its IAT. When loading a bound
executable, the Windows loader can bypass the step of looking up each imported API and writing it to
the IAT. The correct address is already there! This only happens if the stars align properly, however. My
May 2000 column contains some benchmarks on just how much load-time speed increase you can get
from binding executables.
      You probably have a healthy skepticism about the safety of executable binding. After all, what if you
bind your executable and the DLLs that it imports change? When this happens, all the addresses in the
IAT are invalid. The loader checks for this situation and reacts accordingly. If the addresses in the IAT
are stale, the loader still has all the necessary information from the INT to resolve the addresses of the
imported APIs.
      Binding your programs at installation time is the best possible scenario. The BindImage action of the
Windows installer will do this for you. Alternatively, IMAGEHLP.DLL provides the BindImageEx API.
Either way, binding is good idea. If the loader determines that the binding information is current,
executables load faster. If the binding information becomes stale, you're no worse off than if you hadn't
bound in the first place.
      One of the key steps in making binding effective is for the loader to determine if the binding
information in the IAT is current. When an executable is bound, information about the referenced DLLs
is placed into the executable. The loader checks this information to make a quick determination of the
binding validity. This information wasn't added with the first implementation of binding. Thus, an
executable can be bound in the old way or the new way. The new way is what I'll describe here.
      The key data structure in determining the validity of bound imports is an
IMAGE_BOUND_IMPORT_DESCRIPTOR. A bound executable contains a list of these structures.
Each IMAGE_BOUND_IMPORT_DESCRIPTOR structure represents the time/date stamp of one
imported DLL that has been bound against. The RVA of the list is given by the
IMAGE_DIRECTORY_ENTRY_BOUND_IMPORT element in the DataDirectory. The elements of the
IMAGE_BOUND_IMPORT_DESCRIPTOR are:

TimeDateStamp, a DWORD that contains the time/date stamp of the imported DLL.
OffsetModuleName, a WORD that contains an offset to a string with the name of the imported
DLL. This field is an offset (not an RVA) from the first
IMAGE_BOUND_IMPORT_DESCRIPTOR.
NumberOfModuleForwarderRefs, a WORD that contains the number of
IMAGE_BOUND_FORWARDER_REF structures that immediately follow this structure. These
structures are identical to the IMAGE_BOUND_IMPORT_DESCRIPTOR except that the last
WORD (the NumberOfModuleForwarderRefs) is reserved.

      In a simple world, the IMAGE_BOUND_IMPORT_DESCRIPTORs for each imported DLL would
be a simple array. But, when binding against an API that's forwarded to another DLL, the validity of the
forwarded DLL has to be checked too. Thus, the IMAGE_BOUND_FORWARDER_REF structures are
interleaved with the IMAGE_BOUND_IMPORT_DESCRIPTORs.
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      Let's say you linked against HeapAlloc, which is forwarded to RtlAllocateHeap in NTDLL. Then
you ran BIND on your executable. In your EXE, you'd have an
IMAGE_BOUND_IMPORT_DESCRIPTOR for KERNEL32.DLL, followed by an
IMAGE_BOUND_FORWARDER_REF for NTDLL.DLL. Immediately following that might be
additional IMAGE_ BOUND_IMPORT_DESCRIPTORs for other DLLs you imported and bound
against.

Delayload Data

      Earlier I described how delayloading a DLL is a hybrid approach between an implicit import and
explicitly importing APIs via LoadLibrary and GetProcAddress. Now let's take a look at the data
structures and see how delayloading works.
      Remember that delayloading is not an operating system feature. It's implemented entirely by
additional code and data added by the linker and runtime library. As such, you won't find many
references to delayloading in WINNT.H. However, you can see definite parallels between the delayload
data and regular imports data.
      The delayload data is pointed to by the IMAGE_DIRECTORY_ENTRY_DELAY_IMPORT entry in
the DataDirectory. This is an RVA to an array of ImgDelayDescr structures, defined in DelayImp.H from
Visual C++. Figure 7 shows the contents. There's one ImgDelayDescr for each delayload imported DLL.
      The key thing to glean from ImgDelayDescr is that it contains the addresses of an IAT and an INT
for the DLL. These tables are identical in format to their regular imports equivalent, only they're written
to and read by the runtime library code rather than the operating system. When you call an API from a
delayloaded DLL for the first time, the runtime calls LoadLibrary (if necessary), and then
GetProcAddress. The resulting address is stored in the delayload IAT so that future calls go directly to
the API.
      There is a bit of goofiness about the delayload data that needs explanation. In its original incarnation
in Visual C++ 6.0, all ImgDelayDescr fields containing addresses used virtual addresses, rather than
RVAs. That is, they contained actual addresses where the delayload data could be found. These fields are
DWORDs, the size of a pointer on the x86.
      Now fast-forward to IA-64 support. All of a sudden, 4 bytes isn't enough to hold a complete address.
Ooops! At this point, Microsoft did the correct thing and changed the fields containing addresses to
RVAs. As shown in Figure 7, I've used the revised structure definitions and names.
      There is still the issue of determining whether an ImgDelayDescr is using RVAs or virtual addresses.
The structure has a field to hold flag values. When the "1" bit of the grAttrs field is on, the structure
members should be treated as RVAs. This is the only option starting with Visual StudioÂ® .NET and the
64-bit compiler. If that bit in grAttrs is off, the ImgDelayDescr fields are virtual addresses.

The Resources Section

      Of all the sections within a PE, the resources are the most complicated to navigate. Here, I'll describe
just the data structures that are used to get to the raw resource data such as icons, bitmaps, and dialogs. I
won't go into the actual format of the resource data since it's beyond the scope of this article.
      The resources are found in a section called .rsrc. The IMAGE_DIRECTORY_ENTRY_RESOURCE
entry in the DataDirectory contains the RVA and size of the resources. For various reasons, the resources
are organized in a manner similar to a file systemâ€”with directory and leaf nodes.
      The resource pointer from the DataDirectory points to a structure of type
IMAGE_RESOURCE_DIRECTORY. The IMAGE_RESOURCE_DIRECTORY structure contains
unused Characteristic, TimeDateStamp, and version number fields. The only interesting fields in an
IMAGE_RESOURCE_DIRECTORY are the NumberOfNamedEntries and the NumberOfIdEntries.
      Following each IMAGE_RESOURCE_DIRECTORY structure is an array of
IMAGE_RESOURCE_DIRECTORY_ENTRY structures. Adding the NumberOfNamedEntries and
NumberOfIdEntries fields from the IMAGE_RESOURCE_DIRECTORY yields the count of
IMAGE_RESOURCE_DIRECTORY_ENTRYs. (If all these data structure names are painful for you to
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read, let me tell you, it's also awkward writing about them!)
      A directory entry points to either another resource directory or to the data for an individual resource.
When the directory entry points to another resource directory, the high bit of the second DWORD in the
structure is set and the remaining 31 bits are an offset to the resource directory. The offset is relative to
the beginning of the resource section, not an RVA.
      When a directory entry points to an actual resource instance, the high bit of the second DWORD is
clear. The remaining 31 bits are the offset to the resource instance (for example, a dialog). Again, the
offset is relative to the resource section, not an RVA.
      Directory entries can be named or identified by an ID value. This is consistent with resources in an
.RC file where you can specify a name or an ID for a resource instance. In the directory entry, when the
high bit of the first DWORD is set, the remaining 31 bits are an offset to the string name of the resource.
If the high bit is clear, the bottom 16 bits contain the ordinal identifier.
      Enough theory! Let's look at an actual resource section and decipher what it means. Figure 8 shows
abbreviated PEDUMP output for the resources in ADVAPI32.DLL. Each line that starts with "ResDir"
corresponds to an IMAGE_RESOURCE_DIRECTORY structure. Following "ResDir" is the name of
the resource directory, in parentheses. In this example, there are resource directories named 0,
MOFDATA, MOFRESOURCENAME, STRING, C36, RCDATA, and 66. Following the name is the
combined number of directory entries (both named and by ID). In this example, the topmost directory
has three immediate directory entries, while all the other directories contain a single entry.
      In everyday use, the topmost directory is analogous to the root directory of a file system. Each
directory entry below the "root" is always a directory in its own right. Each of these second-level
directories corresponds to a resource type (strings tables, dialogs, menus, and so on). Underneath each of
the second-level "resource type" directories, you'll find third-level subdirectories.
      There's a third-level subdirectory for each resource instance. For example, if there were five dialogs,
there would be a second-level DIALOG directory with five directory entries beneath it. Each of the five
directory entries would themselves be a directory. The name of the directory entry corresponds to the
name or ID of the resource instance. Under each of these directory entries is a single item which
contains the offset to the resource data. Simple, no?
      If you learn more efficiently by reading code, be sure to check out the resource dumping code in
PEDUMP (see the February 2002 code download for this article). Besides displaying all the resource
directories and their entries, it also dumps out several of the more common types of resource instances
such as dialogs.

Base Relocations

      In many locations in an executable, you'll find memory addresses. When an executable is linked, it's
given a preferred load address. These memory addresses are only correct if the executable loads at the
preferred load address specified by the ImageBase field in the IMAGE_FILE_HEADER structure.
      If the loader needs to load the DLL at another address, all the addresses in the executable will be
incorrect. This entails extra work for the loader. The May 2000 Under The Hood column (mentioned
earlier) describes the performance hit when DLLs have the same preferred load addresses and how the
REBASE tool can help.
      The base relocations tell the loader every location in the executable that needs to be modified if the
executable doesn't load at the preferred load address. Luckily for the loader, it doesn't need to know any
details about how the address is being used. It just knows that there's a list of locations that need to be
modified in some consistent way.
      Let's look at an x86-based example to make this clear. Say you have the following instruction, which
loads the value of a local variable (at address 0x0040D434) into the ECX register:

00401020: 8B 0D 34 D4 40 00  mov ecx,dword ptr [0x0040D434]

The instruction is at address 0x00401020 and is six bytes long. The first two bytes (0x8B 0x0D) make
up the opcode of the instruction. The remaining four bytes hold a DWORD address (0x0040D434). In
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this example, the instruction is from an executable with a preferred load address of 0x00400000. The
global variable is therefore at an RVA of 0xD434.
      If the executable does load at 0x00400000, the instruction can run exactly as is. But let's say that the
executable somehow gets loaded at address of 0x00500000. If this happens, the last four bytes of the
instruction need to be changed to 0x0050D434.
      How can the loader make this change? The loader compares the preferred and actual load addresses
and calculates a delta. In this case, the delta value is 0x00100000. This delta can be added to the value of
the DWORD-sized address to come up with the new address of the variable. In the previous example,
there would be a base relocation for address 0x00401022, which is the location of the DWORD in the
instruction.
      In a nutshell, base relocations are just a list of locations in an executable where a delta value needs to
be added to the existing contents of memory. The pages of an executable are brought into memory only
as they're needed, and the format of the base relocations reflects this. The base relocations reside in a
section called .reloc, but the correct way to find them is from the DataDirectory using the
IMAGE_DIRECTORY_ENTRY_BASERELOC entry.
      Base relocations are a series of very simple IMAGE_BASE_RELOCATION structures. The
VirtualAddress field contains the RVA of the memory range to which the relocations belong. The
SizeOfBlock field indicates how many bytes make up the relocation information for this base, including
the size of the IMAGE_BASE_RELOCATION structure.
      Immediately following the IMAGE_BASE_RELOCATION structure is a variable number of
WORD values. The number of WORDs can be deduced from the SizeOfBlock field. Each WORD
consists of two parts. The top 4 bits indicate the type of relocation, as given by the
IMAGE_REL_BASED_xxx values in WINNT.H. The bottom 12 bits are an offset, relative to the
VirtualAddress field, where the relocation should be applied.
      In the previous example of base relocations, I simplified things a bit. There are actually multiple
types of base relocations and methods for how they're applied. For x86 executables, all base relocations
are of type IMAGE_REL_BASED_HIGHLOW. You will often see a relocation of type
IMAGE_REL_BASED_ABSOLUTE at the end of a group of relocations. These relocations do nothing,
and are there just to pad things so that the next IMAGE_BASE_RELOCATION is aligned on a 4-byte
boundary.
      For IA-64 executables, the relocations seem to always be of type IMAGE_REL_BASED_DIR64. As
with x86 relocations, there will often be IMAGE_REL_BASED_ABSOLUTE relocations used for
padding. Interestingly, although pages in IA-64 EXEs are 8KB, the base relocations are still done in
4KB chunks.
      In Visual C++ 6.0, the linker omits relocations for EXEs when doing a release build. This is because
EXEs are the first thing brought into an address space, and therefore are essentially guaranteed to load at
the preferred load address. DLLs aren't so lucky, so base relocations should always be left in, unless you
have a reason to omit them with the /FIXED switch. In Visual Studio .NET, the linker omits base
relocations for debug and release mode EXE files.

The Debug Directory

      When an executable is built with debug information, it's customary to include details about the
format of the information and where it is. The operating system doesn't require this to run the
executable, but it's useful for development tools. An EXE can have multiple forms of debug
information; a data structure known as the debug directory indicates what's available.
      The DebugDirectory is found via the IMAGE_DIRECTORY_ENTRY_DEBUG slot in the
DataDirectory. It consists of an array of IMAGE_DEBUG_DIRECTORY structures (see Figure 9), one
for each type of debug information. The number of elements in the debug directory can be calculated
using the Size field in the DataDirectory.
      By far, the most prevalent form of debug information today is the PDB file. The PDB file is
essentially an evolution of CodeView-style debug information. The presence of PDB information is
indicated by a debug directory entry of type IMAGE_DEBUG_TYPE_CODEVIEW. If you examine the
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data pointed to by this entry, you'll find a short CodeView-style header. The majority of this debug data
is just a path to the external PDB file. In Visual Studio 6.0, the debug header began with an NB10
signature. In Visual Studio .NET, the header begins with an RSDS.
      In Visual Studio 6.0, COFF debug information can be generated with the /DEBUGTYPE:COFF
linker switch. This capability is gone in Visual Studio .NET. Frame Pointer Omission (FPO) debug
information comes into play with optimized x86 code, where the function may not have a regular stack
frame. FPO data allows the debugger to locate local variables and parameters.
      The two types of OMAP debug information exist only for Microsoft programs. Microsoft has an
internal tool that reorganizes the code in executable files to minimize paging. (Yes, more than the
Working Set Tuner can do.) The OMAP information lets tools convert between the original addresses in
the debug information and the new addresses after having been moved.
      Incidentally, DBG files also contain a debug directory like I just described. DBG files were prevalent
in the Windows NT 4.0 era, and they contained primarily COFF debug information. However, they've
been phased out in favor of PDB files in Windows XP.

The .NET Header

      Executables produced for the Microsoft .NET environment are first and foremost PE files. However,
in most cases normal code and data in a .NET file are minimal. The primary purpose of a .NET
executable is to get the .NET-specific information such as metadata and intermediate language (IL) into
memory. In addition, a .NET executable links against MSCOREE.DLL. This DLL is the starting point
for a .NET process. When a .NET executable loads, its entry point is usually a tiny stub of code. That
stub just jumps to an exported function in MSCOREE.DLL (_CorExeMain or _CorDllMain). From
there, MSCOREE takes charge, and starts using the metadata and IL from the executable file. This setup
is similar to the way apps in Visual Basic (prior to .NET) used MSVBVM60.DLL. The starting point for
.NET information is the IMAGE_COR20_HEADER structure, currently defined in CorHDR.H from the
.NET Framework SDK and more recent versions of WINNT.H. The IMAGE_COR20_HEADER is
pointed to by the IMAGE_DIRECTORY_ENTRY_COM_DESCRIPTOR entry in the DataDirectory.
Figure 10 shows the fields of an IMAGE_COR20_HEADER. The format of the metadata, method IL,
and other things pointed to by the IMAGE_COR20_HEADER will be described in a subsequent article.

TLS Initialization

      When using thread local variables declared with __declspec(thread), the compiler puts them in a
section named .tls. When the system sees a new thread starting, it allocates memory from the process
heap to hold the thread local variables for the thread. This memory is initialized from the values in the
.tls section. The system also puts a pointer to the allocated memory in the TLS array, pointed to by
FS:[2Ch] (on the x86 architecture).
      The presence of thread local storage (TLS) data in an executable is indicated by a nonzero
IMAGE_DIRECTORY_ENTRY_TLS entry in the DataDirectory. If nonzero, the entry points to an
IMAGE_TLS_DIRECTORY structure, shown in Figure 11.
      It's important to note that the addresses in the IMAGE_TLS_DIRECTORY structure are virtual
addresses, not RVAs. Thus, they will get modified by base relocations if the executable doesn't load at its
preferred load address. Also, the IMAGE_TLS_DIRECTORY itself is not in the .tls section; it resides in
the .rdata section.

Program Exception Data

      Some architectures (including the IA-64) don't use frame-based exception handling, like the x86
does; instead, they used table-based exception handling in which there is a table containing information
about every function that might be affected by exception unwinding. The data for each function includes
the starting address, the ending address, and information about how and where the exception should be
handled. When an exception occurs, the system searches through the tables to locate the appropriate
entry and handles it. The exception table is an array of IMAGE_RUNTIME_FUNCTION_ENTRY
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structures. The array is pointed to by the IMAGE_DIRECTORY_ENTRY_EXCEPTION entry in the
DataDirectory. The format of the IMAGE_RUNTIME_FUNCTION_ENTRY structure varies from
architecture to architecture. For the IA-64, the layout looks like this:

DWORD BeginAddress;

DWORD EndAddress;

DWORD UnwindInfoAddress;

The format of the UnwindInfoAddress data isn't given in WINNT.H. However, the format can be found
in Chapter 11 of the "IA-64 Software Conventions and Runtime Architecture Guide" from Intel.

The PEDUMP Program

      My PEDUMP program (available for download with Part 1 of this article) is significantly improved
from the 1994 version. It displays every data structure described in this article, including:

IMAGE_NT_HEADERS
Imports / Exports
Resources
Base relocations
Debug directory
Delayload imports
Bound import descriptors
IA-64 exception handling tables
TLS initialization data
.NET runtime header

      In addition to dumping PE executables, PEDUMP can also dump COFF format OBJ files, COFF
import libraries (new and old formats), COFF symbol tables, and DBG files.
      PEDUMP is a command-line program. Running it without any options on one of the file types just
described leads to a default dump that contains the more useful data structures. There are several
command-line options for additional output (see Figure 12).
      The PEDUMP source code is interesting for a couple of reasons. It compiles and runs as either a 32
or 64-bit executable. So if you have an Itanium box handy, give it a whirl! In addition, PEDUMP can
dump both 32 and 64-bit executables, regardless of how it was compiled. In other words, the 32-bit
version can dump 32 and 64-bit files, and the 64-bit version can dump 32 and 64-bit files.
      In thinking about making PEDUMP work on both 32 and 64-bit files, I wanted to avoid having two
copies of every function, one for the 32-bit form of a structure and another for the 64-bit form. The
solution was to use C++ templates.
      In several files (EXEDUMP.CPP in particular), you'll find various template functions. In most cases,
the template function has a template parameter that expands to either an IMAGE_NT_HEADERS32 or
IMAGE_NT_HEADERS64. When invoking these functions, the code determines the 32 or 64-bitness of
the executable file and calls the appropriate function with the appropriate parameter type, causing an
appropriate template expansion.
      With the PEDUMP sources, you'll find a Visual C++ 6.0 project file. Besides the traditional x86
debug and release configurations, there's also a 64-bit build configuration. To get this to work, you'll
need to add the path to the 64-bit tools (currently in the Platform SDK) at the top of the Executable path
under the Tools | Options | Directories tab. You'll also need to make sure that the proper paths to the 64-
bit Include and Lib directories are set properly. My project file has correct settings for my machine, but
you may need to change them to build on your machine.
      In order to make PEDUMP as complete as possible, it was necessary to use the latest versions of the
Windows header files. In the June 2001 Platform SDK which I developed against, these files are in the
.\include\prerelease and .\Include\Win64\crt\ directories. In the August 2001 SDK, there's no need to use
the prerelease directories, since WINNT.H has been updated. The essential point is that the code does
build. You may just need to have a recent enough Platform SDK installed or modify the project
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directories if building the 64-bit version.

Wrap-up

      The Portable Executable format is a well-structured and relatively simple executable format. It's
particularly nice that PE files can be mapped directly into memory so that the data structures on disk are
the same as those Windows uses at runtime. I've also been surprised at how well the PE format has held
up with all the various changes that have been thrown at it in the past 10 years, including the transition
to 64-bit Windows and .NET.
      Although I've covered many aspects of PE files, there are still topics that I haven't gotten to. There
are flags, attributes, and data structures that occur infrequently enough that I decided not to describe
them here. However, I hope that this "big picture" introduction to PE files has made the Microsoft PE
specifications easier for you to understand.

For related articles see:

Part 1 of this series
Peering Inside the PE: A Tour of the Win32 Portable Executable File Format

For background information see:

The Common Object File Format (COFF)
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